Controllability and Observability Matrix
ctr_matrix.Rd
The controllability matrix of a statespace realisation \(k(z)=C(I-Az^{-1})^{-1}B + D\) is the matrix $$ [B,AB,\dots,A^{o-1}B] $$ and the observability matrix is $$ [C',A'C',\dots,(A')^{o-1}C']' $$
Arguments
- A
either a
stsp
object or a square \((s,s)\) dimensional matrix.- B
\((s,n)\) dimensional matrix. This argument is ignored if
A
is astsp
object.- o
(non negative) integer. The default value is \(o=s\).
- C
\((m,s)\) dimensional matrix. This argument is ignored if
A
is astsp
object.