Skip to contents

Transform polm object to polynomial in forward shift (represented as lpolm object), i.e. transform $$a(z) = a_0 + a_1 z^1 + \cdots + a_p z^p$$ to $$a(z) = a_0 + a_1 z^{-1} + \cdots + a_p z^{-p}$$

Usage

polm2fwd(polm_obj)

Arguments

polm_obj

polm object

Value

lpolm object

Examples

(p = test_polm(degree = 3))
#> ( 1 x 1 ) matrix polynomial with degree <= 3 
#>      z^0 [,1] z^1 [,1] z^2 [,1] z^3 [,1]
#> [1,]      110      111      112      113
polm2fwd(p)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 0, and minimal degree >= -3
#>      z^-3 [,1] z^-2 [,1] z^-1 [,1] z^0 [,1]
#> [1,]       113       112       111      110