Transforms to Polynomial in Forward Shift
polm2fwd.Rd
Transform polm
object to polynomial in forward shift (represented as lpolm
object), i.e. transform
$$a(z) = a_0 + a_1 z^1 + \cdots + a_p z^p$$
to
$$a(z) = a_0 + a_1 z^{-1} + \cdots + a_p z^{-p}$$
Arguments
- polm_obj
polm
object
Value
lpolm
object
Examples
(p = test_polm(degree = 3))
#> ( 1 x 1 ) matrix polynomial with degree <= 3
#> z^0 [,1] z^1 [,1] z^2 [,1] z^3 [,1]
#> [1,] 110 111 112 113
polm2fwd(p)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 0, and minimal degree >= -3
#> z^-3 [,1] z^-2 [,1] z^-1 [,1] z^0 [,1]
#> [1,] 113 112 111 110