Create Test Laurent Polynomial Matrix
test_lpolm.Rd
See test_polm
.
This simple tool creates Laurent polynomial matrices for testing purposes.
The column_start_matrix
, i.e. the matrix consisting of the columns pertaining to the smallest column degrees,
the value_at_0
, and that column_end_matrix
matrix are set in this order.
Thus, column_end_matrix
may potentially overwrite value_at_0
.
Usage
test_lpolm(
dim = c(1, 1),
degree_max = 1,
degree_min = -1,
random = FALSE,
col_start_matrix = NULL,
value_at_0 = NULL,
col_end_matrix = NULL
)
Arguments
- dim
two dimensional vector of non negative integers, determines the dimension of the polynomial matrix to be created. If the prescribed number of rows or number of columns is zero then an "empty" polynomial matrix is generated. In this case all parameters below are ignored.
- degree_max, degree_min
Integer, vector, or matrix specifying minimal and maximal (column) degrees
- random
If TRUE the coefficents are generated by drawing from a normal distribution. If FALSE then the coefficient of the \(k\)-th power \(z^k\) of the (i,j)-th entry is set equal to "\(ijk\)". In this case the parameters below are ignored!
- col_start_matrix
Force a matrix for lowest column degrees
- value_at_0
desired value of the polynomial at \(z=0\) (or
NULL
).- col_end_matrix
desired column end matrix (or
NULL
).
Value
lpolm
object
Details
In contrast to test_polm
, the absolute value of the zeros cannot be forced to be larger than a certain lower bound bzeroes
.
Examples
(lp = test_lpolm(dim = c(1,1), degree_max = 1, degree_min = -2))
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 1, and minimal degree >= -2
#> z^-2 [,1] z^-1 [,1] z^0 [,1] z^1 [,1]
#> [1,] -0.6386418 -0.02363646 -1.415598 -2.130058
(lp = test_lpolm(dim = c(3,3), degree_max = c(0,1,2), degree_min = -2))
#> ( 3 x 3 ) Laurent polynomial matrix with degree <= 2, and minimal degree >= -2
#> z^-2 [,1] [,2] [,3] z^-1 [,1] [,2] [,3]
#> [1,] 0.00172149 -0.5082567 0.2052962 -0.17643686 0.9120409 0.30013345
#> [2,] 0.11169212 -0.2109276 0.1866326 -0.09551422 0.9361289 1.41946783
#> [3,] -1.37265313 0.4562633 -0.3862650 -2.81839037 0.5914964 0.09397515
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3] z^2 [,1]
#> [1,] -1.7735858 -0.09306234 0.2236165 0 0.1575114 0.4842178 0
#> [2,] -0.4488422 -1.60400013 0.4917717 0 -0.5204071 0.2336085 0
#> [3,] -0.2835388 0.73137283 0.3026959 0 0.2433878 -0.7878802 0
#> [,2] [,3]
#> [1,] 0 -1.1624028
#> [2,] 0 1.3069491
#> [3,] 0 0.1046523
(lp = test_lpolm(dim = c(3,3), degree_max = 1, degree_min = c(0,-1,-2)))
#> ( 3 x 3 ) Laurent polynomial matrix with degree <= 1, and minimal degree >= -2
#> z^-2 [,1] [,2] [,3] z^-1 [,1] [,2] [,3] z^0 [,1]
#> [1,] 0 0 0.3774721 0 -0.76877520 -2.1662821 -2.4054549
#> [2,] 0 0 -1.0121461 0 -0.07447983 -0.6534886 -1.3293992
#> [3,] 0 0 0.6938027 0 -0.79862800 0.4024766 -0.2519315
#> [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] -0.1290110 0.3391213 -0.65042744 -0.7474391 0.9843586
#> [2,] -1.6525061 -1.5153475 -1.73868216 -0.8449526 -0.7580670
#> [3,] -0.9866644 -0.5726728 -0.04290366 -2.5081827 -0.2795617