Rational Matrix Transpose
transpose.Rd
Compute the transpose of a rational matrix \(x(z)\).
Value
A rational matrix object,
which represents the transposed rational matrix \(x'(z)\).
The output is of the same class as the input x
unless
x
is an lmfd
or an rmfd
object:
The transposition of
an lmfd
object is an rmfd
object, and vice versa.
Examples
x = test_polm(dim = c(2,3), degree = 3, random = TRUE)
all.equal(pseries(t(x)), t(pseries(x)))
#> [1] TRUE
x = test_stsp(dim = c(3,2), s = 1)
all.equal(zvalues(t(x)), t(zvalues(x)))
#> [1] TRUE
# the transpose of an LMFD object is RMFD
(x = test_lmfd(dim = c(3,2), degrees = c(1,1)))
#> ( 3 x 2 ) left matrix fraction description a^(-1)(z) b(z) with degrees (p = 1, q = 1)
#> left factor a(z):
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] 1 0 0 1.1128444 1.5707491 0.2400267
#> [2,] 0 1 0 -0.1622396 0.7176393 -1.2201228
#> [3,] 0 0 1 1.6799761 -1.3955622 1.2804358
#> right factor b(z):
#> z^0 [,1] [,2] z^1 [,1] [,2]
#> [1,] 0.5602858 0.4737814 -0.1401662 0.33412629
#> [2,] -1.2834204 -0.6066674 -1.1380241 -0.02753544
#> [3,] 1.1649031 -0.6720017 -0.2829108 -1.11218295
t(x)
#> ( 2 x 3 ) right matrix fraction description d(z) c^(-1)(z) with degrees deg(c(z)) = p = 1, deg(d(z)) = q = 1
#> left factor d(z):
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] 0.5602858 -1.2834204 1.1649031 -0.1401662 -1.13802408 -0.2829108
#> [2,] 0.4737814 -0.6066674 -0.6720017 0.3341263 -0.02753544 -1.1121829
#> right factor c(z):
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] 1 0 0 1.1128444 -0.1622396 1.679976
#> [2,] 0 1 0 1.5707491 0.7176393 -1.395562
#> [3,] 0 0 1 0.2400267 -1.2201228 1.280436
all.equal(x, t(t(x)))
#> [1] TRUE