Rational Matrix Transpose
transpose.RdCompute the transpose of a rational matrix \(x(z)\).
Value
A rational matrix object,
which represents the transposed rational matrix \(x'(z)\).
The output is of the same class as the input x unless
x is an lmfd or an rmfd object:
The transposition of
an lmfd object is an rmfd object, and vice versa.
Examples
x = test_polm(dim = c(2,3), degree = 3, random = TRUE)
all.equal(pseries(t(x)), t(pseries(x)))
#> [1] TRUE
x = test_stsp(dim = c(3,2), s = 1)
all.equal(zvalues(t(x)), t(zvalues(x)))
#> [1] TRUE
# the transpose of an LMFD object is RMFD
(x = test_lmfd(dim = c(3,2), degrees = c(1,1)))
#> ( 3 x 2 ) left matrix fraction description a^(-1)(z) b(z) with degrees (p = 1, q = 1)
#> left factor a(z):
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] 1 0 0 0.4881914 0.3722990 0.2515316
#> [2,] 0 1 0 -1.3334324 -1.3931584 1.4003740
#> [3,] 0 0 1 -0.6412660 0.4756471 1.2336156
#> right factor b(z):
#> z^0 [,1] [,2] z^1 [,1] [,2]
#> [1,] 0.8713687 1.5276530 -0.40423152 0.4698279
#> [2,] -0.7459840 -0.1158758 -0.01323844 -1.9713205
#> [3,] 0.2781470 1.4555469 -0.59943140 0.3595583
t(x)
#> ( 2 x 3 ) right matrix fraction description d(z) c^(-1)(z) with degrees deg(c(z)) = p = 1, deg(d(z)) = q = 1
#> left factor d(z):
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] 0.8713687 -0.7459840 0.278147 -0.4042315 -0.01323844 -0.5994314
#> [2,] 1.5276530 -0.1158758 1.455547 0.4698279 -1.97132047 0.3595583
#> right factor c(z):
#> z^0 [,1] [,2] [,3] z^1 [,1] [,2] [,3]
#> [1,] 1 0 0 0.4881914 -1.333432 -0.6412660
#> [2,] 0 1 0 0.3722990 -1.393158 0.4756471
#> [3,] 0 0 1 0.2515316 1.400374 1.2336156
all.equal(x, t(t(x)))
#> [1] TRUE