Compute the log likelihood for a statespace system described by a model template.
ll_kf_theta_cpp.Rd
This is an internal helper function, used by the function factory ll_FUN
. For a more detailed
documentation of the log Likelihood, see ll_kf
.
Usage
ll_kf_theta_cpp(
theta,
y,
SYS,
H_SYS,
h_SYS,
sigma_L,
H_sigma_L,
h_sigma_L,
VAR,
P1,
tol,
err
)
Arguments
- theta
\((K)\) dimensional vector of "deep" parameters.
- y
\((m,N)\) matrix with the observed outputs: \((y_1,y_2,\ldots,y_N)\).
- SYS
\((m+s,m+s)\) matrix, is overwritten with the system matrix \([A,B | C,D]\).
- H_SYS
\((m+s)^2, K)\) matrix.
- h_SYS
\(((m+s)^2)\)-dimensional vector. Note that
vec(SYS) = H_SYS*theta + h_SYS
.- sigma_L
\((m,m)\) matrix, is overwritten with the left square root of the noise covariance matrix.
- H_sigma_L
\((m^2, K)\) matrix.
- h_sigma_L
\((m^2)\)-dimensional vector. Note that
vec(sigma_L) = H_sigma_L*theta + h_sigma_L
.- VAR
\((m+s,m+s)\) matrix, is overwritten with the covariance matrix \([Q,S | S',R] = [B | C] sigma_L sigma_L' [B', C']\)
- P1
\((s,s)\) matrix, is overwritten with the initial state covariance matrix (computed via a Lyapunov equation).
- tol
(double) tolerance used by ll_kf_cpp.
- err
(double) return err, if the computation of P1 fails.