Constructor for RMFD Models
rmfdmod.RdArguments
- sys
rationalmatrices::rmfd()object- sigma_L
Left-factor of noise covariance, i.e. the covariance \(\sigma\) is obtained as
sigma_L * t(sigma_L). Ifsigma_Lis a vector of dimension \(n\), where \(n\) is the input dimension, only the diagonal elements are parametrized. If it is a vector of dimension \(n^2\), then the elements ofsigma_Lare filled column by column.- names
optional vector of character strings
- label
optional character string
Details
A right-matrix fraction description (RMFD) plus parameterisation of noise covariance.
In (Hannan and Deistler 2012)
, RMFDs are also called dynamic adjustment forms.
Internally, MFDs are lists with slots sys, sigma_L, names, label.
Many of the generic functions which construct derived objects like the autocovariance autocov() are not yet implemented for rmfdmod objects.
References
Hannan EJ, Deistler M (2012). The Statistical Theory of Linear Systems, Classics in Applied Mathematics. SIAM, Philadelphia. Originally published: John Wiley & Sons, New York, 1988.
Examples
y = rmfdmod(sys = test_rmfd(dim = c(3,2), degrees = c(2,2)))
y
#> RMFD model [3,2] with orders p = 2 and q = 2
#> right factor polynomial c(z):
#> z^0 [,1] [,2] z^1 [,1] [,2] z^2 [,1] [,2]
#> [1,] 1 0 -0.6002596 1.5326106 -1.0264209 0.2568837
#> [2,] 0 1 2.1873330 -0.2357004 -0.7104066 -0.2466919
#> left factor polynomial d(z):
#> z^0 [,1] [,2] z^1 [,1] [,2] z^2 [,1] [,2]
#> [1,] -0.34754260 -0.7849045 0.9189966 -1.61788271 0.3011534 -0.8497043
#> [2,] -0.95161857 -1.6679419 -0.5753470 -0.05556197 0.1056762 -1.0241288
#> [3,] -0.04502772 -0.3802265 0.6079643 0.51940720 -0.6407060 0.1176466
#> Left square root of noise covariance Sigma:
#> u[1] u[2]
#> u[1] 1 0
#> u[2] 0 1