Forward and Backward Bracket
get_fwd.Rd
For an lpolm
object as input, get_bwd
discards all coefficient matrices pertaining to negative powers and returns a lpolm
object with min_deg = 0
.
Similarly, get_fwd
discards all coefficient matrices pertaining to non-negative powers, and also returns an lpolm
object.
Arguments
- lpolm_obj
Laurent polynomial object
lpolm
Value
Laurent polynomial object lpolm
without non-negative coefficients or without negative
Details
Obtain the forward or backward part of a Laurent polynomial, i.e. apply \([.]_-\) or \([.]_+\) to
$$a(z) = a_{-q} z^{-q} + \cdots + a_{-1} z^{-1} + a_0 + a_1 z^1 + \cdots + a_p z^p$$
and obtain for get_fwd
$$[a(z)]_- = a_{-q} z^{-q} + \cdots + a_{-1} z^{-1}$$
or for get_bwd
$$[a(z)]_+ = a_0 + a_1 z^1 + \cdots + a_p z^p$$
Examples
(lp = test_lpolm(degree_max = 2, degree_min = -2))
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 2, and minimal degree >= -2
#> z^-2 [,1] z^-1 [,1] z^0 [,1] z^1 [,1] z^2 [,1]
#> [1,] 0.03531025 0.4941645 -0.6351894 -1.043395 2.096363
get_fwd(lp)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= -1, and minimal degree >= -2
#> z^-2 [,1] z^-1 [,1]
#> [1,] 0.03531025 0.4941645
(lp = test_lpolm(degree_max = 2, degree_min = -2))
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 2, and minimal degree >= -2
#> z^-2 [,1] z^-1 [,1] z^0 [,1] z^1 [,1] z^2 [,1]
#> [1,] 0.5202974 -0.3023961 1.245488 -1.409315 0.1863452
get_bwd(lp)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 2, and minimal degree >= 0
#> z^0 [,1] z^1 [,1] z^2 [,1]
#> [1,] 1.245488 -1.409315 0.1863452
(lp = lpolm(1:3, min_deg = 2))
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 4, and minimal degree >= 2
#> z^2 [,1] z^3 [,1] z^4 [,1]
#> [1,] 1 2 3
get_bwd(lp)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 4, and minimal degree >= 0
#> z^0 [,1] z^1 [,1] z^2 [,1] z^3 [,1] z^4 [,1]
#> [1,] 0 0 1 2 3
(lp = lpolm(1:3, min_deg = -1))
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 1, and minimal degree >= -1
#> z^-1 [,1] z^0 [,1] z^1 [,1]
#> [1,] 1 2 3
get_bwd(lp)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= 1, and minimal degree >= 0
#> z^0 [,1] z^1 [,1]
#> [1,] 2 3
(lp = lpolm(1:3, min_deg = -5))
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= -3, and minimal degree >= -5
#> z^-5 [,1] z^-4 [,1] z^-3 [,1]
#> [1,] 1 2 3
get_bwd(lp)
#> ( 1 x 1 ) Laurent polynomial matrix with degree <= -1, and minimal degree >= 0