Skip to contents

Print Methods

Usage

# S3 method for class 'armamod'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z", "character"),
  ...
)

# S3 method for class 'rmfdmod'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z", "character"),
  ...
)

# S3 method for class 'stspmod'
print(x, digits = NULL, ...)

# S3 method for class 'impresp'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z"),
  ...
)

# S3 method for class 'autocov'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z"),
  ...
)

# S3 method for class 'fevardec'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z"),
  ...
)

# S3 method for class 'freqresp'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z"),
  ...
)

# S3 method for class 'spectrald'
print(
  x,
  digits = NULL,
  format = c("i|jz", "i|zj", "iz|j", "zi|j", "i|j|z"),
  ...
)

Arguments

x

RLDM object, i.e. a armamod(), rmfdmod(), stspmod(), impresp(), autocov(), freqresp(), spectrum() or fevardec() object.

digits

(integer) if non NULL then correspondingly rounded numbers are printed, see round().

format

(character string) selects specific output formats. Note that rationalmatrices::stsp() and fevardec() objects have no format option. The option 'character' is only implemented for (V)ARMA models.

...

Further parameters are ignored.

Value

invisible(x)

Examples

# for VARMA models six different print formats are implemented ###################
m = armamod(test_lmfd(dim = c(2,2), degrees = c(1,1)), sigma_L = diag(2))
print(m, digits = 2, format = "i|jz")
#> ARMA model [2,2] with orders p = 1 and q = 1
#> AR polynomial a(z):
#>      z^0 [,1]  [,2] z^1 [,1]  [,2]
#> [1,]        1     0    -2.14 -0.97
#> [2,]        0     1    -2.48 -0.78
#> MA polynomial b(z):
#>      z^0 [,1]  [,2] z^1 [,1]  [,2]
#> [1,]    -0.16 -1.19     2.17 -1.04
#> [2,]    -0.18  1.11    -0.81 -0.58
#> Left square root of noise covariance Sigma:
#>      u[1] u[2]
#> u[1]    1    0
#> u[2]    0    1